Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Protoc ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514839

RESUMO

The forthcoming massive genome data generated by the Earth BioGenome Project will open up a new era of comparative genomics, for which genome synteny analysis provides an important framework. Profiling genome synteny represents an essential step in elucidating genome architecture, regulatory blocks/elements and their evolutionary history. Here we describe PanSyn, ( https://github.com/yhw320/PanSyn ), the most comprehensive and up-to-date genome synteny pipeline, providing step-by-step instructions and application examples to demonstrate its usage. PanSyn inherits both basic and advanced functions from existing popular tools, offering a user-friendly, highly customized approach for genome macrosynteny analysis and integrated pan-evolutionary and regulatory analysis of genome architecture, which are not yet available in public synteny software or tools. The advantages of PanSyn include: (i) advanced microsynteny analysis by functional profiling of microsynteny genes and associated regulatory elements; (ii) comprehensive macrosynteny analysis, including the inference of karyotype evolution from ancestors to extant species; and (iii) functional integration of microsynteny and macrosynteny for pan-evolutionary profiling of genome architecture and regulatory blocks, as well as integration with external functional genomics datasets from three- or four-dimensional genome and ENCODE projects. PanSyn requires basic knowledge of the Linux environment and Perl programming language and the ability to access a computer cluster, especially for large-scale genomic comparisons. Our protocol can be easily implemented by a competent graduate student or postdoc and takes several days to weeks to execute for dozens to hundreds of genomes. PanSyn provides yet the most comprehensive and powerful tool for integrated evolutionary and functional genomics.

2.
Zool Res ; 45(2): 329-340, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38485503

RESUMO

The leopard coral grouper ( Plectropomus leopardus) is a species of significant economic importance. Although artificial cultivation of P. leopardus has thrived in recent decades, the advancement of selective breeding has been hindered by the lack of comprehensive population genomic data. In this study, we identified over 8.73 million single nucleotide polymorphisms (SNPs) through whole-genome resequencing of 326 individuals spanning six distinct groups. Furthermore, we categorized 226 individuals with high-coverage sequencing depth (≥14×) into eight clusters based on their genetic profiles and phylogenetic relationships. Notably, four of these clusters exhibited pronounced genetic differentiation compared with the other populations. To identify potentially advantageous loci for P. leopardus, we examined genomic regions exhibiting selective sweeps by analyzing the nucleotide diversity ( θπ) and fixation index ( F ST) in these four clusters. Using these high-coverage resequencing data, we successfully constructed the first haplotype reference panel specific to P. leopardus. This achievement holds promise for enabling high-quality, cost-effective imputation methods. Additionally, we combined low-coverage sequencing data with imputation techniques for a genome-wide association study, aiming to identify candidate SNP loci and genes associated with growth traits. A significant concentration of these genes was observed on chromosome 17, which is primarily involved in skeletal muscle and embryonic development and cell proliferation. Notably, our detailed investigation of growth-related SNPs across the eight clusters revealed that cluster 5 harbored the most promising candidate SNPs, showing potential for genetic selective breeding efforts. These findings provide a robust toolkit and valuable insights into the management of germplasm resources and genome-driven breeding initiatives targeting P. leopardus.


Assuntos
Antozoários , Bass , Humanos , Animais , Filogenia , Estudo de Associação Genômica Ampla/veterinária , Genoma
3.
J Invertebr Pathol ; 204: 108082, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38447863

RESUMO

A specific strain of Vibrio parahaemolyticus (VpAHPND) causes acute hepatopancreatic necrosis disease (AHPND), leading to significant losses in shrimp aquaculture. Outer membrane vesicles (OMVs) are naturally secreted by Gram-negative bacteria, and their significant roles in host-pathogen interactions and pathogenicity have been recognized. In the present study, OMVs were isolated from VpAHPND by differential-ultracentrifugation and used for proteomics analysis. In the Nano-HPLC-MS/MS analysis, totally 645 proteins were determined, including virulence factors, immunogenic proteins, outer membrane protein, bacterial secretory proteins, ribosomal proteins, protease, and iron regulation proteins. Furthermore, GO and KEGG annotations indicated that proteins identified in VpAHPND-OMVs are involved in metabolism, regulation of multiple biological processes, genetic information processes, immunity and more. Meanwhile, toxin proteins PirAvp and PirBvp, associated with VpAHPND pathogenicity, were also identified in the proteome of VpAHPND-OMVs. Our objective is to identify the protein composition of OMVs released by VpAHPND, analyzing the potential for cytotoxicity and immunomodulatory activity of these granule hosts. This study is crucial for understanding the roles played by bacterial-derived vesicles in the disease process, given that these vesicles carry relevant activities inherent to the bacteria that produce them.

4.
Evol Appl ; 17(2): e13657, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38357357

RESUMO

The dwarf surf clam, Mulinia lateralis, is considered as a model species for bivalves because of its rapid growth and short generation time. Recently, successful breeding of this species for multiple generations in our laboratory revealed its acquisition of adaptive advantages during artificial breeding. In this study, 310 individuals from five different generations were genotyped with 22,196 single nucleotide polymorphisms (SNPs) with the aim of uncovering the genetic basis of their adaptation to laboratory conditions. Results revealed that M. lateralis consistently maintained high genetic diversity across generations, characterized by high observed heterozygosity (H o: 0.2733-0.2934) and low levels of inbreeding (F is: -0.0244-0.0261). Population analysis indicated low levels of genetic differentiation among generations of M. lateralis during artificial breeding (F st <0.05). In total, 316 genomic regions exhibited divergent selection, with 168 regions under positive selection. Furthermore, 227 candidate genes were identified in the positive selection regions, which have functions including growth, stress resistance, and reproduction. Notably, certain selection signatures with significantly higher F st value were detected in genes associated with male reproduction, such as GAL3ST1, IFT88, and TSSK2, which were significantly upregulated during artificial breeding. This suggests a potential role of sperm-associated genes in the rapid evolutionary response of M. lateralis to selection in laboratory conditions. Overall, our findings highlight the phenotypic and genetic changes, as well as selection signatures, in M. lateralis during artificial breeding. This contributes to understanding their adaptation to laboratory conditions and underscores the potential for using this species to explore the adaptive evolution of bivalves.

5.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38305453

RESUMO

Target enrichment sequencing techniques are gaining widespread use in the field of genomics, prized for their economic efficiency and swift processing times. However, their success depends on the performance of probes and the evenness of sequencing depth among each probe. To accurately predict probe coverage depth, a model called Deqformer is proposed in this study. Deqformer utilizes the oligonucleotides sequence of each probe, drawing inspiration from Watson-Crick base pairing and incorporating two BERT encoders to capture the underlying information from the forward and reverse probe strands, respectively. The encoded data are combined with a feed-forward network to make precise predictions of sequencing depth. The performance of Deqformer is evaluated on four different datasets: SNP panel with 38 200 probes, lncRNA panel with 2000 probes, synthetic panel with 5899 probes and HD-Marker panel for Yesso scallop with 11 000 probes. The SNP and synthetic panels achieve impressive factor 3 of accuracy (F3acc) of 96.24% and 99.66% in 5-fold cross-validation. F3acc rates of over 87.33% and 72.56% are obtained when training on the SNP panel and evaluating performance on the lncRNA and HD-Marker datasets, respectively. Our analysis reveals that Deqformer effectively captures hybridization patterns, making it robust for accurate predictions in various scenarios. Deqformer leads to a novel perspective for probe design pipeline, aiming to enhance efficiency and effectiveness in probe design tasks.


Assuntos
Aprendizado Profundo , RNA Longo não Codificante , Sondas de DNA/genética , Hibridização de Ácido Nucleico , Genômica
6.
J Hazard Mater ; 459: 132257, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37572611

RESUMO

Hexavalent chromium (Cr(VI)) is a cytotoxic heavy metal pollutant that adversely affects all life forms. Interestingly, the crustacean Procambarus clarkii exhibits a relatively high tolerance to heavy metals. The underlying mechanisms remain unclear. In this study, we investigated the role of symbiotic bacteria in P. clarkii in alleviating Cr(VI)-induced damage and explored their potential mechanisms of action. Through transcriptomic analysis, we observed that Cr(VI) activated P. clarkii's antimicrobial immune responses and altered the bacterial composition in the hemolymph. After antibiotic treatment to reduce bacterial populations, Cr(VI)-induced intestinal and liver damage worsened, and crayfish exhibited lower levels of GSH/CAT/SOD activity. The Exiguobacterium, the symbiotic bacteria in the hemolymph of P. clarkii, were proved to be primary contributor to Cr(VI) tolerance. Further investigation suggested that it resists Cr(VI) through the activation of the ABC transporter system and the reduction of Cr(VI) via the reductase gene nfsA. To validate the role of Exiguobacterium in Cr(VI) tolerance, crayfish treated with antibiotics then supplemented with Exiguobacterium H6 and recombinant E. coli (with the nfsA gene), reduced Cr(VI)-induced ovarian damage. Overall, this study revealed that the symbiotic bacteria Exiguobacterium can absorb and reduce hexavalent chromium, mitigating Cr(VI)-induced damage in P. clarkii. These findings provide new insights into hexavalent chromium tolerance mechanisms in crustaceans.


Assuntos
Astacoidea , Metais Pesados , Animais , Escherichia coli , Hemolinfa , Cromo/toxicidade , Bactérias
7.
Neurologist ; 28(1): 11-18, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35452441

RESUMO

BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive neuromodulation technique. The purpose of our study is to explore the effects of low-frequency (0.5 Hz) and high-frequency (10 Hz) rTMS on neurological function, motor function, and excitability of cortex in Chinese ischemic stroke patients. MATERIALS AND METHODS: A total of 240 ischemic stroke patients were collected. The National Institutes of Health Stroke Scale (NIHSS), modified Rankin Scale (mRS), motor-evoked potential (MEP) cortical latency, central motor conduction time (CMCT), Fugel-Meyer assessment (FMA), Berg balance scale (BBS), and modified Barthel index (MBI) scores were recorded. RESULTS: After treatment, the NIHSS, mRS, MEP cortical latency, CMCT, FMA, BBS, and MBI scores of the high-frequency group and low-frequency group were significantly improved than the sham stimulation group, and the changes in the low-frequency group were more significant (adjusted P <0.05). Compared with the sham stimulation group, high-frequency stimulation reduced the NIHSS score by 9.5%, mRS score by 12.6%, MEP latency by 2.5%, and CMCT by 5.8%, and increased the upper limb FMA scale by 16.4%, lower limb FMA scale by 8.8%, BBS by 26.3%, and MBI by 9.3%, while low-frequency stimulation reduced the NIHSS score by 23.8%, mRS score by 25.3%, MEP Latency by 11.7%, and CMCT by 9.1%, and increased the upper limb FMA scale by 24.1%, lower limb FMA scale by 18.4%, BBS by 27.4%, and MBI by 23.7% in our cohort. CONCLUSIONS: Low-frequency rTMS is better than high-frequency rTMS stimulation in improving neurological function, motor function, and excitability of cortex in ischemic stroke.


Assuntos
AVC Isquêmico , Córtex Motor , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/terapia , Reabilitação do Acidente Vascular Cerebral/métodos , Estimulação Magnética Transcraniana/métodos , Resultado do Tratamento
8.
BMC Genomics ; 23(1): 738, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36324074

RESUMO

BACKGROUND: Mytilidae, also known as marine mussels, are widely distributed in the oceans worldwide. Members of Mytilidae show a tremendous range of ecological adaptions, from the species distributed in freshwater to those that inhabit in deep-sea. Mitochondria play an important role in energy metabolism, which might contribute to the adaptation of Mytilidae to different environments. In addition, some bivalve species are thought to lack the mitochondrial protein-coding gene ATP synthase F0 subunit 8. Increasing studies indicated that the absence of atp8 may be caused by annotation difficulties for atp8 gene is characterized by highly divergent, variable length. RESULTS: In this study, the complete mitochondrial genomes of three marine mussels (Xenostrobus securis, Bathymodiolus puteoserpentis, Gigantidas vrijenhoeki) were newly assembled, with the lengths of 14,972 bp, 20,482, and 17,786 bp, respectively. We annotated atp8 in the sequences that we assembled and the sequences lacking atp8. The newly annotated atp8 sequences all have one predicted transmembrane domain, a similar hydropathy profile, as well as the C-terminal region with positively charged amino acids. Furthermore, we reconstructed the phylogenetic trees and performed positive selection analysis. The results showed that the deep-sea bathymodiolines experienced more relaxed evolutionary constraints. And signatures of positive selection were detected in nad4 of Limnoperna fortunei, which may contribute to the survival and/or thriving of this species in freshwater. CONCLUSIONS: Our analysis supported that atp8 may not be missing in the Mytilidae. And our results provided evidence that the mitochondrial genes may contribute to the adaptation of Mytilidae to different environments.


Assuntos
Genoma Mitocondrial , Mytilidae , Animais , Mytilidae/genética , Filogenia , Genes Mitocondriais , ATPases Mitocondriais Próton-Translocadoras/genética , Genômica/métodos
9.
Nat Ecol Evol ; 6(12): 1891-1906, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36280781

RESUMO

Contrary to classic theory prediction, sex-chromosome homomorphy is prevalent in the animal kingdom but it is unclear how ancient homomorphic sex chromosomes avoid chromosome-scale degeneration. Molluscs constitute the second largest, Precambrian-originated animal phylum and have ancient, uncharacterized homomorphic sex chromosomes. Here, we profile eight genomes of the bivalve mollusc family of Pectinidae in a phylogenetic context and show 350 million years sex-chromosome homomorphy, which is the oldest known sex-chromosome homomorphy in the animal kingdom, far exceeding the ages of well-known heteromorphic sex chromosomes such as 130-200 million years in mammals, birds and flies. The long-term undifferentiation of molluscan sex chromosomes is potentially sustained by the unexpected intertwined regulation of reversible sex-biased genes, together with the lack of sexual dimorphism and occasional sex chromosome turnover. The pleiotropic constraint of regulation of reversible sex-biased genes is widely present in ancient homomorphic sex chromosomes and might be resolved in heteromorphic sex chromosomes through gene duplication followed by subfunctionalization. The evolutionary dynamics of sex chromosomes suggest a mechanism for 'inheritance' turnover of sex-determining genes that is mediated by translocation of a sex-determining enhancer. On the basis of these findings, we propose an evolutionary model for the long-term preservation of homomorphic sex chromosomes.


Assuntos
Evolução Biológica , Cromossomos Sexuais , Animais , Filogenia , Cromossomos Sexuais/genética , Genoma , Caracteres Sexuais , Mamíferos/genética
10.
Genomics Proteomics Bioinformatics ; 20(6): 1066-1077, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35905893

RESUMO

Genome miniaturization drives key evolutionary innovations of adaptive traits in vertebrates, such as the flight evolution of birds. However, whether similar evolutionary processes exist in invertebrates remains poorly understood. Derived from the second-largest animal phylum, scallops are a special group of bivalve molluscs and acquire the evolutionary novelty of the swimming lifestyle, providing excellent models for investigating the coordinated genome and lifestyle evolution. Here, we show for the first time that genome sizes of scallops exhibit a generally negative correlation with locomotion activity. To elucidate the co-evolution of genome size and swimming lifestyle, we focus on the Asian moon scallop (Amusium pleuronectes) that possesses the smallest known scallop genome while being among scallops with the highest swimming activity. Whole-genome sequencing of A. pleuronectes reveals highly conserved chromosomal macrosynteny and microsynteny, suggestive of a highly contracted but not degenerated genome. Genome reduction of A. pleuronectes is facilitated by significant inactivation of transposable elements, leading to reduced gene length, elevated expression of genes involved in energy-producing pathways, and decreased copy numbers and expression levels of biomineralization-related genes. Similar evolutionary changes of relevant pathways are also observed for bird genome reduction with flight evolution. The striking mimicry of genome miniaturization underlying the evolution of bird flight and scallop swimming unveils the potentially common, pivotal role of genome size fluctuation in the evolution of novel lifestyles in the animal kingdom.


Assuntos
Pectinidae , Natação , Animais , Genoma , Pectinidae/genética , Pectinidae/metabolismo , Aves/genética , Filogenia
11.
Nucleic Acids Res ; 50(W1): W66-W74, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35639514

RESUMO

It is of vital importance to understand the population structure, dissect the genetic bases of performance traits, and make proper strategies for selection in breeding programs. However, there is no single webserver covering the specific needs in aquaculture. We present Aquaculture Molecular Breeding Platform (AMBP), the first web server for genetic data analysis in aquatic species of farming interest. AMBP integrates the haplotype reference panels of 18 aquaculture species, which greatly improves the accuracy of genotype imputation. It also supports multiple tools to infer genetic structures, dissect the genetic architecture of performance traits, estimate breeding values, and predict optimum contribution. All the tools are coherently linked in a web-interface for users to generate interpretable results and evaluate statistical appropriateness. The webserver supports standard VCF and PLINK (PED, MAP) files, and implements automated pipelines for format transformation and visualization to simplify the process of analysis. As a demonstration, we applied the webserver to Pacific white shrimp and Atlantic salmon datasets. In summary, AMBP constitutes comprehensive resources and analytical tools for exploring genetic data and guiding practical breeding programs. AMBP is available at http://mgb.qnlm.ac.


Assuntos
Aquicultura , Embaralhamento de DNA , Polimorfismo de Nucleotídeo Único , Software , Aquicultura/métodos , Genótipo , Fenótipo , Animais , Cruzamento , Internet
12.
Comput Struct Biotechnol J ; 19: 4954-4960, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527199

RESUMO

The king scallop, Pecten maximus is a well-known, commercially important scallop species and is featured with remarkable tolerance to potent phytotoxins such as domoic acid. A high-quality genome can shed light on its biology and innovative evolution of toxin resistance. A reference genome has recently been published for P. maximus, however, it is suspicious that over 67,700 genes are annotated in this genome, which is unexpectedly larger than its close relatives of pectinids. Herein, we provide an improved high-quality chromosome-level reference genome assembly and annotation for the king scallop P. maximus. A final set of 26,995 genes is annotated after carefully checking and curation of the predicted gene models, which significantly improves the accuracy of gene structure information. The large number of gene duplicates in the previous genome is mainly distorted by the fragmented annotation. Through integrated genomic, evolutionary and transcriptomic analyses, we reveal that the Phi subfamily of ionotropic glutamate receptors (iGluRs) are well preserved in molluscs, and P. maximus experienced the rapid expansion of the Phi class of iGluR (GluF) gene family. The GluF genes exhibit ubiquitously high expression and altered sequence characteristics for ligand selectivity, which may contribute to the remarkable tolerance to neurotoxins in P. maximus. Taken together, our study disapproves the previous claim of the 'gene-rich' genome of this species and provides a high-quality genome assembly for further understanding of its biology and evolution of toxin resistance.

13.
Front Genet ; 12: 650045, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349776

RESUMO

The increasing sea temperature caused by global warming has resulted in severe mortalities in maricultural scallops. Therefore, improving thermal tolerance has become an active research area in the scallop farming industry. Bay scallop (Argopecten irradians irradians) was introduced into China in 1982 and has developed into a vast aquaculture industry in northern China. To date, genetic studies on thermal tolerance in bay scallops are limited, and no systematic screening of thermal tolerance-related loci or genes has been conducted in this species. In the present study, we conducted a genome-wide association study (GWAS) for thermal tolerance using the Arrhenius break temperature (ABT) indicators of 435 bay scallops and 38,011 single nucleotide polymorphism (SNP) markers. The GWAS identified 1,906 significant thermal tolerance-associated SNPs located in 16 chromosomes of bay scallop. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that 638 genes were enriched in 42 GO terms, while 549 annotated genes were enriched in aggregation pathways. Additionally, the SNP (15-5091-20379557-1) with the lowest P value was located in the transcriptional coactivator p15 (PC4) gene, which is involved in regulating DNA damage repair and stabilizing genome functions. Further analysis in another population identified two new thermal tolerance-associated SNPs in the first coding sequence of PC4 in bay scallops (AiPC4). Moreover, AiPC4 expression levels were significantly correlated (r = 0.675-0.962; P < 0.05) with the ABT values of the examined bay scallops. Our data suggest that AiPC4 might be a positive regulator of thermal tolerance and a potential candidate gene for molecular breeding in bay scallop aiming at thermal tolerance improvement.

15.
Mol Biol Evol ; 38(6): 2351-2365, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33528571

RESUMO

Blood clams differ from their molluscan kins by exhibiting a unique red-blood (RB) phenotype; however, the genetic basis and biochemical machinery subserving this evolutionary innovation remain unclear. As a fundamental step toward resolving this mystery, we presented the first chromosome-level genome and comprehensive transcriptomes of the blood clam Tegillarca granosa for an integrated genomic, evolutionary, and functional analyses of clam RB phenotype. We identified blood clam-specific and expanded gene families, as well as gene pathways that are of RB relevant. Clam-specific RB-related hemoglobins (Hbs) showed close phylogenetic relationships with myoglobins (Mbs) of blood clam and other molluscs without the RB phenotype, indicating that clam-specific Hbs were likely evolutionarily derived from the Mb lineage. Strikingly, similar to vertebrate Hbs, blood clam Hbs were present in a form of gene cluster. Despite the convergent evolution of Hb clusters in blood clam and vertebrates, their Hb clusters may have originated from a single ancestral Mb-like gene as evidenced by gene phylogeny and synteny analysis. A full suite of enzyme-encoding genes for heme synthesis was identified in blood clam, with prominent expression in hemolymph and resembling those in vertebrates, suggesting a convergence of both RB-related Hb and heme functions in vertebrates and blood clam. RNA interference experiments confirmed the functional roles of Hbs and key enzyme of heme synthesis in the maintenance of clam RB phenotype. The high-quality genome assembly and comprehensive transcriptomes presented herein serve new genomic resources for the super-diverse phylum Mollusca, and provide deep insights into the origin and evolution of invertebrate RB.


Assuntos
Arcidae/genética , Evolução Biológica , Hemoglobinas/genética , Animais , Arcidae/metabolismo , Cromossomos , Genoma , Heme/biossíntese , Hemolinfa/metabolismo , Humanos , Família Multigênica , Transcriptoma
16.
Aquat Toxicol ; 230: 105700, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33285378

RESUMO

Aquatic environmental pollutants have various impacts on aquaculture. Specifically, sulfide has been established as being toxic to aquatic animals including the oriental river prawn Macrobrachium nipponense. In response, the hepatopancreas has been broadly studied, as it plays a pivotal role in arthropod nutrient digestion and absorption, energy supply, and organ development as well as in crustacean immunity. However, the underlying molecular mechanisms of hepatopancreas's response to sulfide toxicity are still poorly understand. Herein, we used Nova-seq 6000 platform to conduct a comparative transcriptome analysis of gene expression profiles in the hepatopancreas of M. nipponense, while it was under the influence of a semi-lethal sulfide concentration (3.20 mg/L at 48 h). A total of 139 million raw reads were obtained, in which 67,602 transcripts were clustered into 37,041 unigenes for further analysis. After constant sulfide exposure for 48 h, 235 differentially expressed genes, i.e., DEGs (151 up-regulated and 84 down-regulated) were identified in the sulfide treatment group (TGHP) compared with the control group (CGHP). We used GO and KEGG databases to annotate all the DEGs into 1180 functions and 123 pathways, respectively. The metabolic pathways included proximal tubule bicarbonate reclamation, sulfur metabolism, glycolysis and gluconeogenesis, and the TCA cycle; while immune-related pathways contained Ras, Rap1, focal adhesion and platelet activation. Additionally, apoptosis-involved pathways e.g., lysosome, also exhibited remarkable alteration in the presence of sulfide stress. Notably, responses to external stimuli and detoxification genes- such as GSKIP, CRT2, APOD, TRET1, CYP4C3 and HR39- were significantly altered by the sulfide stress, indicating that significant toxicity was transferred through energy metabolism, growth, osmoregulatory processes and immunity. Finally, we demonstrated that in the present of sulfide stress, M. nipponense altered the expression of detoxification- and extracellular stimulation-related genes, and displayed positive resistance via tight junction activation and lysosome pathways. The results of these novel experiments shed light on the hepatopancreas's molecular response to sulfide stress resistance and the corresponding adaptation mechanism; and enable us to identify several potential biomarkers for further studies.


Assuntos
Hepatopâncreas/efeitos dos fármacos , Palaemonidae/efeitos dos fármacos , Sulfetos/toxicidade , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Aclimatação , Animais , China , Regulação para Baixo , Hepatopâncreas/metabolismo , Hepatopâncreas/patologia , Palaemonidae/genética , Palaemonidae/metabolismo , Rios/química , Regulação para Cima
17.
Ecotoxicol Environ Saf ; 208: 111503, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33120268

RESUMO

The oriental river prawn Macrobrachium nipponense is a commercially important freshwater shrimp that is widely farmed in China. Aeromonas veronii is a conditional pathogen of farmed shrimp, which has caused huge economic losses to the industry. Therefore, there is urgency to study the host-pathogen interactions between M. nipponense and A. veronii to screen individuals with antimicrobial resistance. In this study, we examined the hepatopancreas of moribund M. nipponense infected with A. veronii and healthy individuals at both the histopathological and transcriptomic levels. We showed that A. veronii infection resulted in tubular necrosis of the M. nipponense hepatopancreas. Such changes likely affect assimilation, storage, and excretion by the hepatopancreas, which could ultimately affect the survival and growth of infected individuals. Among the 61,345 unigenes obtained through RNA sequencing and de novo transcriptome assembly, 232 were differentially expressed between the two groups. KEGG and GO analyses revealed that these differentially expressed genes were implicated in pathways, including PPAR, PI3K/AKT, and AMPK signaling. The results of this study will contribute to an analysis of the immune response of M. nipponense to A. veronii infection at the transcriptomic level. Furthermore, the RNA-seq data generated here provide an important genomic resource for research on M. nipponense in the absence of a reference genome.


Assuntos
Aeromonas veronii/fisiologia , Hepatopâncreas/imunologia , Palaemonidae/microbiologia , Alimentos Marinhos/microbiologia , Transcriptoma/imunologia , Animais , China , Hepatopâncreas/patologia , Interações Hospedeiro-Patógeno , Necrose , Palaemonidae/imunologia , Transdução de Sinais
18.
Fish Shellfish Immunol ; 106: 876-886, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32800983

RESUMO

Spiroplasma eriocheiris (S. eriocheiris) infection causes a significant economic loss in Penaeus vannamei (P. vannamei) culture industry. However, the response of P. vannamei hemocytes to S. eriocheiris infection has not been extensively studied. In this study, we conducted full-length transcriptome and long non-coding RNA (lncRNA) analyses of P. vannamei hemocytes by a challenge test with S. eriocheiris. Following assembly and annotation, there were 8077 high-quality unigenes. A total of 1168 differentially expressed genes (DEGs) were obtained, including 792 up-regulated and 376 down-regulated genes by differential expression analysis. Gene ontology (GO) enrichment analysis showed that the up-regulated DEGs were mainly clustered into immune system process, defense response, cell cycle and organelle organization. On the other hand, the down-regulated DEGs included that genes that were mainly clustered into metabolic processes related to organic compounds, metabolic process and cellular metabolic process. Protein-protein interaction (PPI) network analysis of DEGs indicated that the pivotal gene interactions were connected to stress response, immune system process and cell cycle. The lncRNA analysis identified multiple lncRNAs, which were highly co-expressed with the immune-related genes, such as lncRNA transcript-12631 and transcript-12631, suggesting that lncRNAs may be involved in the regulation of immune defense in shrimp hemocytes. Additionally, 20 hub unigenes and putative lncRNAs related to immune system were validated by quantitative real-time PCR (qRT-PCR), validating the reliability of RNA-Seq. This study revealed a close connection between the immune and metabolic systems of S. eriocheiris infected P. vannamei.


Assuntos
Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Penaeidae/genética , Penaeidae/imunologia , RNA Longo não Codificante/imunologia , Spiroplasma , Animais , Infecções por Bactérias Gram-Negativas/veterinária , Hemócitos/imunologia , Penaeidae/microbiologia , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...